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Bibliography-based characterization and searches 

Bibliography-based drug characterization 

Aside from a review of official regulatory documentation and drug-target dedicated databases, a 

review of the currently available bibliography regarding known targets of the drugs was 

performed in PubMed on April 27, 2020. The specific searches performed were the following: 

- ("Elvanse" [Title/abstract] OR "Vyvanse" [Title/abstract] OR "Lisdexamfetamine" 

[Title/Abstract]) AND ("molecular" [Title/Abstract] OR "mechanism" [Title/Abstract] 

OR "pathophysiology" [Title/Abstract] OR "pathogenesis" [Title/Abstract] OR "mode" 

[Title/Abstract] OR "action" [Title/Abstract] OR "signaling" [Title/Abstract] OR 

"signalling "[Title/Abstract] OR "expression" [Title/Abstract] OR "activation" 

[Title/Abstract] OR "inhibition" [Title/Abstract] OR "activity" [Title/Abstract]) 

- ("Methylphenidate" [Title] OR "Medikinet" [title/abstract] OR "Concerta" [title/abstract] 

OR “Medikinet”[title/abstract]) AND ("molecular" [Title] OR "mechanism" [Title] OR 

"pathophysiology" [Title] OR "pathogenesis" [Title] OR "action" [Title] OR "signaling" 

[Title] OR "signalling " [Title]) 

All articles were analyzed at the title and abstract level. The presence of molecular information 

was reviewed in depth to identify protein/gene candidates to be considered drug target candidates. 

 

Bibliography-based conditions characterization 

For disease characterization, we initiated an extensive and careful full-length review of relevant 

articles in the PubMed database (up to January 21, 2020) that included the following search 

strings: 

- ADHD: ("Attention deficit hyperactivity disorder" [Title] OR "ADHD" [Title] OR 

"Attention-Deficit/Hyperactivity Disorder" [Title]) AND (“pathogenesis” 

[Title/Abstract] OR “pathophysiology” [Title/Abstract] OR “molecular” [Title/Abstract]) 

AND Review [ptyp]. 

- Depression: ("Depression" [Title] OR "Major Depressive Disorder" [Title]) AND 

("Molecular" [Title/Abstract] AND ("Pathophysiology" [Title/Abstract]) OR 

("Pathogenesis" [Title/Abstract]) AND (Review[ptyp] AND "2015/01/28" [PDat] : 

"2020/01/28" [PDat]) 

- Anxiety: (“Anxiety disorders” [Title] OR "Anxiety" [Title]) AND ("Pathogenesis" [Title] 

OR "Pathophysiology" [Title] OR "Molecular"[Title]) 

- Bipolar Disorder: ("Manic-Depressive" [Title] OR "Bipolar" [Title] OR "Manic 

Depressive" [Title] OR "Manic Disorder" [Title] OR "Manic Depression" [Title]) AND 

(“Pathogenesis” [Title/Abstract] OR “Pathophysiology” [Title/Abstract] OR 

“Molecular” [Title/Abstract]) AND Review[ptyp] 
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- Tics Disorder: (“TICS” [Title] OR "Tic Disorder" [Title] OR "Tic Disorders" [Title]) 

AND ("Pathogenesis" [Title/Abstract] OR "Pathophysiology" [Title/Abstract] OR 

"Molecular" [Title/Abstract]) 

- Binge eating: ("Binge Eating Disorder" [Title] OR "Binge Eating" [Title]) AND 

("Pathogenesis" [Title/Abstract] OR "Pathophysiology" [Title/Abstract] OR "Molecular" 

[Title/Abstract]) 

The list of publications identified in the specific searches was retrieved and assessed at the title 

and abstract level. If molecular information describing pathophysiology conditions was found, 

the full texts were thoroughly reviewed to identify the main pathophysiological processes known 

to be involved in the diseases (Table A in the S2 File). Subsequently, each pathophysiological 

process was further characterized at the protein level by using the retrieved publications. 

Accordingly, proteins whose activity (or lack thereof) are functionally associated with the 

development of the condition were identified (Table B in the S2 File).  

 

Clinical trial information compilation  

To accurately obtain a model-derived efficacy value to fit clinical efficacy values, clinical trials 

that assess the efficacy of drugs currently approved and commonly used in clinical practice were 

retrieved from clinicaltrials.gov and PubMed. Only phase III clinical trials that were 

interventional (i.e. included at least an arm treated with the drug of interest), completed, and had 

published results were considered. Once listed, these clinical trials were evaluated to select the 

efficacy scale most frequently used and the best representative of drug variability (i.e. that 

included data from a vast number of drugs). Accordingly, the ADHD Rating Scale IV (ADHD-

RS IV) and the following list of drugs were considered: Amphetamine, Atomoxetine, Bupropion, 

Clonidine, Dexmethylphenidate, Guanfacine, Lisdexamfetamine, and Methylphenidate. The 

selected drugs were characterized at the molecular target and pharmacokinetic levels (Table D in 

the S2 File). 

 

Modelling methodology and algorithms 

Virtual population modelling 

Adult virtual populations (vPOPs) are created by assigning demographic variables (age, weight, 

height, and body mass index [BMI]) to virtually generated patients by using a modification of the 

algorithm proposed by Allen et al. (1). Accordingly, we define as original population the one 

whose characteristics we would like to mimic and as standard population the reference use to 

complete missing demographic characteristics. Firstly, a multivariate normal distribution 

(MVND) with the given means and standard deviations for each variable from the original 

population is created. When data about a specific parameter is not available, the information is 
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taken from the standard population distribution (in this study, for the adult population, a standard 

European distribution (2) was used). Since BMI, weight, and height are related through equation 

1, only age and one pair of the morphometric parameters (weight and BMI, weight and height, or 

BMI and height) are generated.  

𝐵𝑀𝐼(𝑘𝑔/𝑚2) =
𝑤𝑒𝑖𝑔ℎ𝑡(𝑘𝑔)

ℎ𝑒𝑖𝑔ℎ𝑡(𝑚)2 equation [1] 

Secondly, a cost function based on the original population demographic parameters is used with 

the objective of being minimized until the generated population resembles the available 

information on the original population. A simulated annealing strategy is used to minimize the 

cost function by using as starting points the patients generated according to MVND values.  

Let n be the number of patients to generate; 𝜇𝑖 ,  𝜎𝑖 ,  𝑚𝑖 ,  𝑀𝑖 the mean, standard deviations, 

minimums, and maximums of the original population’s age, height, weight, and BMI (𝑖); 𝑋𝑖 the 

𝑛 dimensional vector containing the variable 𝑖’s values of the generated population; and 𝑋𝑖,𝑗 the 

𝑛 × 2 matrix containing the generated population’s values of the variables 𝑖 and 𝑗 so that it 

represents the concatenation of 𝑋𝑖 with 𝑋𝑗. For any data vector 𝑋 generated with the multivariate 

distribution, let mean(𝑋), std(𝑋), min(𝑋) and max(𝑋) be the mean, standard deviation, minimum, 

and maximum of 𝑋. Two different cost functions are defined: the first one contains only age as a 

single item, and the second equation is based on equation 1, relating two of the morphometric 

parameters (BMI, weight, and height).  

For age (𝑎): 

 

𝑓𝑎(𝑋𝑎) = (mean(𝑋𝑎) − 𝜇𝑎)6 + (std(𝑋𝑎) − 𝜎𝑎)4 + ∑ max((𝑥𝑎 −
𝑚𝑎+𝑀𝑎

2
)

2
−𝑥𝑎∈𝑋𝑎

(
𝑀𝑎−𝑚𝑎

2
)

2
, 0)   equation [2] 

For a pair of the morphometric parameters (BMI, weight, and height) (𝑖, 𝑗): 

𝑓1𝑖,𝑗(𝑋𝑖,𝑗) = (mean(𝑋𝑖) − 𝜇𝑖)6 + (std(𝑋𝑖) − 𝜎𝑖)4 + (min(𝑋𝑖) − 𝑚𝑖)2 + (max(𝑋𝑖) − 𝑀𝑖)2 +

(mean(𝑋𝑗) − 𝜇𝑗)
6

+ (std(𝑋𝑗) − 𝜎𝑗)
4

+ (min(𝑋𝑗) − 𝑚𝑗)
2

+ (max(𝑋𝑗) − 𝑀𝑗)
2
 equation [3] 

Since 𝑖 and 𝑗 are generated independently from the remaining demographic variable (either BMI, 

weight, or height), and to ensure the latter stays in a plausible range, the cost function was 

extended by using equation 3, which also depends on 𝑘: 

𝑖 = weight; 𝑗 = BMI; 𝑘 = height 
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𝑓2.1𝑖,𝑗,𝑘(𝑋𝑖,𝑗) = (mean (√
𝑋𝑖

𝑋𝑗
) − 𝜇𝑘)

6

+ (std (√
𝑋𝑖

𝑋𝑗
) − 𝜎𝑘)

4

+ ∑ (max ((√
𝑥𝑖

𝑥𝑗
−(𝑥𝑖,𝑥𝑗)∈𝑋𝑖,𝑗

𝑚𝑘+𝑀𝑘

2
)

2

− (
𝑀𝑘−𝑚𝑘

2
)

2
, 0))      equation [4] 

𝑖 = height; 𝑗 = BMI; 𝑘 = weight 

𝑓2.2𝑖,𝑗,𝑘(𝑋𝑖,𝑗) = (mean(𝑋𝑖
2 ⋅ 𝑋𝑗) − 𝜇𝑘)

6
+ (std(𝑋𝑖

2 ⋅ 𝑋𝑗) − 𝜎𝑘)
4

+ ∑ (max ((𝑥𝑖
2 ⋅(𝑥𝑖,𝑥𝑗)∈𝑋𝑖,𝑗

𝑥𝑗 −
𝑚𝑘+𝑀𝑘

2
)

2
− (

𝑀𝑘−𝑚𝑘

2
)

2
, 0))   equation [5] 

𝑖 = height; 𝑗 = weight; 𝑘 = BMI 

𝑓2.3𝑖,𝑗,𝑘(𝑋𝑖,𝑗) = (mean (
𝑋𝑗

𝑋𝑖
2) − 𝜇𝑘)

6
+ (std (

𝑋𝑗

𝑋𝑖
2) − 𝜎𝑘)

4
+ ∑ (max ((

𝑥𝑗

𝑥𝑖
2 −(𝑥𝑖,𝑥𝑗)∈𝑋𝑖,𝑗

𝑚𝑘+𝑀𝑘

2
)

2
− (

𝑀𝑘−𝑚𝑘

2
)

2
, 0))    equation [6] 

Where 
𝑋𝑖

𝑋𝑗
 corresponds to the pointwise division, i.e. a vector where the 𝑙th element is the 𝑙th 

element of 𝑋𝑖 divided by the 𝑙th element of 𝑋𝑗. Similarly, 𝑋𝑖 ⋅ 𝑋𝑗 and X2 =  𝑋𝑖 ⋅ 𝑋𝑖 are the 

pointwise multiplications. The final cost function equation for BMI/weight/height results as 

follows: 

𝑓𝑖,𝑗,𝑘(𝑋𝑖,𝑗) =  𝑓1𝑖,𝑗(𝑋𝑖,𝑗) + 𝑓2𝑖,𝑗,𝑘(𝑋𝑖,𝑗)  equation [7] 

A one-sample z-test (alpha= 0.05) is also used to ensure the new population preserves the original 

data distributions; otherwise, the population is recalculated. 

 

In pediatric-adolescent virtual populations, and because morphometric measures drastically 

depend on age, a slightly different approach was undertaken. The first step was generating a 

sample population using the percentiles information reported by the World Health Organization 

in pediatric-adolescent populations (3) and by randomly generating plausible values setting the 

percentiles as probability density function points (4). Subsequently, a resampling strategy based 

on the Metropolis-Hastings method (5) was used to select a sub-population fulfilling the means 

and standard deviations of the original population. An initial sub-population set was chosen 

randomly. Then, an iterative process was carried out by continuously replacing patients from the 

sub-sample with the ones in the generated sample population. If the newly replaced patient 

resulted in a sub-population closer to the original target population, that population was chosen. 

Otherwise, the old patient remained in the population. This process continued until a p-value > 

0.05 was obtained, according to a one sample z-test between distribution values of the sub-

population and the original population. 
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Quantitative Systems Pharmacology models – Physiologically-based pharmacokinetic data 

integration in Therapeutic Performance Mapping System models 

The training data used by Therapeutic Performance Mapping System (TPMS) models (Table C 

in S2 File) consists of physiologically known stimulus-response relationships (e.g. drug-

indication) that must be achieved (6). Therefore, to integrate the patient-specific physiologically-

based pharmacokinetic (PBPK) concentration data with TPMS resulting in the final Quantitative 

Systems Pharmacology (QSP) models, the individuals’ drug concentration variation data need to 

(i) be transformed into a protein activity-like measure (stimulus); and (ii) be associated to a 

molecular effect (response). To that end, drug concentration is translated into drug target protein’s 

grade of activation/inhibition and, in parallel, is related to the pathology—ADHD in this case—

inhibition or reduction by using a set of equations based on the half-maximal response 

concentration (EC50) definition and clinical efficacy data. 

To calculate the stimulus, the following procedure and equations are used. PBPK models describe 

the variation of drug concentration in the different compartments over time. Given a specific 

compartment, the drug concentration (𝐶) variation over time can be expressed as a vector of drug 

concentration values for 𝑖 timepoints (C𝑖). The drug concentration is then related to its protein 

targets (Table 1 in the main text). According to the TPMS definition, the activity of a protein P 

can be treated as a normalized vector with values in the range [-1,1], where 1 represents the 

maximal functional capability of the component to develop its activation functional role, -1 

corresponds to the maximum inhibition capacity, and 0 represents the null capability of 

developing tasks. For each setting, and assuming that the maximal absolute value of P will be 

obtained when drug concentration is maximal (max (𝐶)), we define 𝑆𝑖𝑔 as the protein sign (+1 

when drug activates P, -1 for inhibition), and a vector of protein target activity over time 𝑖 as: 

P𝑖  =  C𝑖 max (𝐶)⁄ × 𝑆𝑖𝑔 equation [8] 

Response values are also calculated by using drug concentration over time (C𝑖) but refer to the 

drug effect over the disease. The transformation into pathology response values can be obtained 

applying the concept of EC50, according to equation 9 (7), being 𝐸𝑓𝑓 the effect of the drug over 

the pathology, which will range from 0 to 1: 

𝐸𝑓𝑓 =  
C

𝐸𝐶50+C
   equation [9] 

As real drug’s EC50 were not available, 𝐸𝐶50′ was here defined as a model-derived proxy related 

to (clinical) efficacy or drug effect. Also, the resulting models’ tSignals were used as a model-

derived measure of the drug’s impact on the pathology (𝐸𝑓𝑓′ i.e. the model equivalent to the 

parameter 𝐸𝑓𝑓). Then, to pre-calculate the 𝐸𝐶50′ and be able to obtain the 𝐸𝑓𝑓′, the theoretical 



7 
 

mechanism of action model between the drugs under study and the molecular descriptors of the 

pathology were built, as described by Jorba et al. (6), and the resulting tSignals extracted. The 

latter was assumed as a drug’s maximal effect and, by applying equation 9, 𝐸𝐶50′ could be 

defined as a function of the 𝐸𝑓𝑓′ when the maximal drug concentration was achieved (max (𝐶)): 

𝐸𝐶50′ =  (
max (𝐶)

Eff′
− max (𝐶))   equation [10] 

 

To render 𝐸𝐶50′ an estimate of clinical efficacy, it was weighted taking into account the real 

clinical efficacies (𝑐𝑙𝐸𝑓𝑓) of the whole set of drugs to be considered in the study; thus, 𝐸𝐶50′ 

was a parameter relative to the set of drug efficacies included in the analysis. For each drug, let 

𝑐𝑙𝐸𝑓𝑓 be the clinical efficacy value; max (𝑐𝑙𝐸𝑓𝑓) the maximum clinical efficacy found from the 

whole set of drugs considered; and 𝐸𝑓𝑓′  the tSignal extracted from the TPMS model. Then: 

𝐸𝐶50′ =  
(

max (𝐶)

𝐸𝑓𝑓′ 
− max (𝐶))

𝑐𝑙𝐸𝑓𝑓

max (𝑐𝑙𝐸𝑓𝑓 )

⁄   equation [11] 

In this study, the set of drugs used for  𝐸𝐶50′ calculation was the same set of drugs that were used 

for the intervention outcome optimization and are summarized in Table D in the S2 File. 

Finally, the response values of each drug could be computed by using the corresponding 𝐸𝐶50′, 

and rewriting equation 9 as shown in equation 12. 

𝐸𝑓𝑓𝑖′ =  
𝐶𝑖

𝐸𝐶50′+𝐶𝑖
  equation [12] 

As a result, a set of stimulus(P𝑖)-response(𝐸𝑓𝑓𝑖′) vector pairs could be computed for each of the 

drugs, one pair per each drug’s protein target, and were added to the training set to construct the 

patient-specific QSP models. 

 

Efficacy outcome – Clinical efficacy measure 

ADHD was characterized and the tSginal of the subsequent protein set was chosen as model-

derived efficacy measure. Then, the TPMS-based MoA models of the selected drug’s clinical 

trials were built (summary in Table E in the S2 File), and the ADHD-tSignals were computed and 

used to measure optimization. In order to link the clinical efficacy measure, ADHD-RS IV, with 

the model-derived value, ADHD-tSignal, linear regression analysis between both variables was 

performed to parameterize the following equation: 

 

𝐶𝑙𝑖𝑛𝑖𝑐𝑎𝑙 𝑒𝑓𝑓𝑖𝑐𝑎𝑐𝑦 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =  𝐴 ∗ 𝑚𝑜𝑑𝑒𝑙 − 𝑑𝑒𝑟𝑖𝑣𝑒𝑑 𝑒𝑓𝑓𝑖𝑐𝑎𝑐𝑦 +  𝐵  
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equation [13] 

 The ADHD-tSignal strongly depends on the disease's molecular characterization. 

However, the initial bibliography-based definition could lead to the inclusion of proteins not 

related to the drugs under study or that might not have a clear role in the clinical manifestations 

affecting the clinical scale. Accordingly, the optimization process was centered by determining 

the molecular definition (ADHD protein subset) of the pathological condition whose tSignal 

would best correlate to clinically observed efficacies (ADHD-RS IV). This process was designed 

to maximize the absolute value of the Pearson correlation coefficient (|ρ|) between clinical and 

tSignal values, maintaining molecular information from the bibliography-based characterization. 

Thus, to identify the best 𝐴 and 𝐵 parameters in equation 13 that linked clinical efficacy measures 

with tSignals, proteins within the ADHD molecular definition were discarded iteratively until a 

molecular definition provided a strong correlation between both variables (8).  
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Supplementary figures 

 

Figure A.  Regression line between optimized ADHD tSignal in the pediatric-adolescent 

population in relation to ADHD-RS IV, change from baseline values (R = -0.81) 

 

Figure B. Regression line between optimized ADHD tSignal in adult patients in relation to 

ADHD-RS IV, change from baseline values (R = -0.79) 
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